Materials Science

Physicochemical Characterization of Biofield Energy Treated Hi VegTM Acid Hydrolysate

Written by Trivedi Effect | Dec 21, 2015 5:00:00 AM

Journal: International Journal of Nutrition and Food Science PDF  

Published: 21-Dec-15 Volume: 5 Issue: 1 Pages: 001-008

DOI: 10.11648/j.ijnfs.20160501.11 ISSN: 2327-2716 (Print) 2327-2716 (Online)

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Ragini Singh, Snehasis Jana

Citation: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Ragini Singh, Snehasis Jana. Physicochemical Characterization of Biofield Energy Treated Hi vegTM Acid Hydrolysate. International Journal of Nutrition and Food Sciences. Vol. 5, No. 1, 2016, pp. 1-8. doi: 10.11648/j.ijnfs.20160501.11

 

Download Article

 

Abstract

The hydrolysed vegetable proteins are acidic or enzymatic hydrolytic product of proteins derived from various sources such as milk, meat or vegetables. The current study was designed to evaluate the impact of biofield energy treatment on the various physicochemical and spectra properties of Hi VegTM acid hydrolysate i.e. a hydrolysed vegetable protein. The Hi VegTM acid hydrolysate sample was divided into two parts that served as control and treated sample. The treated sample was subjected to the biofield energy treatment and its properties were analysed using particle size analyser, X-ray diffraction (XRD), surface area analyser, UV-visible and infrared (FT-IR) spectroscopy, and thermogravimetric analysis. The results of various parameters were compared with the control (untreated) part. The XRD data showed the decrease in crystallite size of treated sample from 110.27 nm (control) to 79.26 nm. The particle size was also reduced in treated sample as 162.13 ?m as compared to the control sample (168.27 ?m). Moreover, the surface area analysis revealed the 63.79% increase in the surface area of the biofield treated sample as compared to the control. The UV-Vis spectra of both samples i.e. control and treated showed the absorbance at same wavelength. However, the FT-IR spectroscopy revealed the shifting in peaks corresponding to N-H, C-H, C=O, C-N, and C-S functional groups in the treated sample with respect to the control. The thermal analysis also revealed the alteration in degradation pattern along with increase in onset temperature of degradation and maximum degradation temperature in the treated sample as compared to the control. The overall data showed the impact of biofield energy treatment on the physicochemical and spectroscopic properties of the treated sample of Hi VegTM acid hydrolysate. The biofield treated sample might show the improved solubility, wettability and thermal stability profile as compared to the control sample.

Conclusion

The biofield treated sample showed a significant decrease in crystallite size (28.12%) and particle size (3.65%) that suggested the presence of internal strain within the molecules. The surface area was found increased by 63.79% in the treated sample that also supported the data of crystallite size and particle size. Moreover, the FT-IR spectroscopy revealed the alteration in the frequency of peaks corresponding to various functional groups in the treated sample such as N-H, C-H, C=O, C-N, C-S, etc. The thermogravimetric analysis revealed the increase in onset temperature of degradation and Tmax that suggested the increased thermal stability of the treated sample as compared to the control. The overall data revealed the impact of biofield energy treatment on the physical, spectroscopic and thermal properties of the Hi VegTM acid hydrolysate sample. The biofield treated sample might show good solubility, wettability and gelling ability along with improved heat stability when used in food industry.