Journal: Journal of Plant Sciences PDF
Published: 16Nov-2015 Volume: 3 Issue: 6 Pages: 285-293
DOI: 10.11648/j.jps.20150306.11 ISSN: 2331-0723 (Print) 2331-0731 (Online)
Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Ragini Singh, Snehasis Jana
Citation: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Ragini Singh, Snehasis Jana. Physicochemical Characterization of Biofield Treated Orchid Maintenance/Replate Medium. Journal of Plant Sciences. Vol. 3, No. 6, 2015, pp. 285-293. doi: 10.11648/j.jps.20150306.11
Orchids are used worldwide for indoor decoration, vanilla production, and beverage preparation. They are also reported for their therapeutic efficacy in brain-related problems. The in vitro micropropagation technique was used for their propagation using the orchid maintenance/replate (OMR) medium. The current study was based on analysing the effect of biofield energy treatment on the physicochemical properties of OMR medium. A part of the sample was treated with Mr. Trivedi’s biofield energy; various physicochemical properties were analyzed and compared with the untreated (control) part. The X-ray diffraction analysis revealed the decrease in crystallite size of treated sample (132.80 nm) as compared to the control (147.55 nm). The particle size analysis revealed 20.78% increase in average particle size and 39.29% increase in d99 (size below which 99% particles are present) of the treated OMR medium as compared to the control. Moreover, the surface area of the treated sample was reduced by 3.9%, supporting the data of particle size analysis. The thermal analysis studies revealed an increase in the thermal stability of the treated OMR medium as compared to the control. The analysis was done by using differential scanning calorimetry that showed increase in melting point (1.23%) and latent heat of fusion (135.7%); and thermogravimetric analysis that reported increase in onset temperature and maximum thermal degradation temperature of the treated sample as compared to the control. Besides, the CHNSO analysis revealed the increase in percentage of nitrogen (22.22%) as well as the presence of sulphur in the treated sample. The Fourier transform infrared and UV-visible spectroscopy also showed the differences in the spectra of the treated sample as compared to the control OMR medium. Hence, the overall data revealed the impact of biofield energy treatment on the physicochemical properties of the treated sample that might be used in better way in the in vitro culture techniques as compared to the control sample.
The XRD study showed 10% decrease in the crystallite size of treated sample along with alteration in the relative intensities of the peaks. It may occur due to the presence of microstrains that might be generated after biofield energy treatment. Moreover, the average particle size and d99 were increased in treated sample by 20.78% and 39.29%, respectively as compared to the control. The surface area data supported the results of particle size analysis and revealed that the surface area was decreased by 4% in the treated sample. The increased particle size and reduced surface area might improve the gelling properties and reduce the problem of hygroscopicity of the treated sample. Besides, the melting temperature and ∆H was found increased in the treated sample as compared to the control. The TGA results also revealed that the onset temperature of degradation and maximum degradation temperature was increased in the treated sample. The increased thermal stability may help in increasing the efficacy and shelf-life of the treated sample as compared to the control. Furthermore, the CHNSO analysis revealed increased percent of nitrogen along with the presence of sulphur in the treated sample as compared to the control. The FT-IR and UV-vis spectra of the treated sample also revealed the changes as compared to the control. The overall study revealed the impact of biofield treatment on the physical, thermal and spectroscopic properties of the OMR medium that could make it more useful as compared to the control.