Life Sciences

An Effect of Biofield Treatment on Multidrug-resistant Burkholderia Cepacia: A Multihost Pathogen

Written by Trivedi Effect | Jul 17, 2015 4:00:00 AM

Journal: Journal of Tropical Diseases PDF  

Published: 17-Jul-15 Volume: 3 Issue: 3 Pages: 001-005

DOI: 10.4172/2329-891X.1000167 ISSN: 2329-891X

Authors: Mahendra Kumar Trivedi, Shrikant Patil, Harish Shettigar, Mayank Gangwar, Snehasis Jana

Citation: Mahendra KT, Shrikant P, Harish S, Mayank G, Jana S (2015) An Effect of Biofield Treatment on Multidrug-resistant Burkholderia cepacia: A Multihost Pathogen. J Trop Dis 3: 167. doi:10.4172/2329-891X.1000167

 

Download Article

 

Abstract

Burkholderia cepacia (B. cepacia) is an opportunistic, Gram negative pathogen which causes infection mainly in immunocompromised population and associated with high rate of morbidity and mortality in cystic fibrosis patients. Aim of the present study was to analyze the impact of biofield treatment on multidrug resistant B. cepacia. Clinical sample of B. cepacia was divided into two groups i.e. control and biofield treated. The analysis was done after 10 days of treatment and compared with control group. Control and treated group were analyzed for susceptibility pattern, MIC value, biochemical studies and biotype number using MicroScan Walk-Away® system. Sensitivity assay results showed a change in pattern from resistant to intermediate in aztreonam, intermediate to resistant in ceftazidime, ciprofloxacin, imipenem, and levofloxacin while sensitive to resistant in meropenem and piperacillin/ tazobactam. The biofield treatment showed an alteration in MIC values of aztreonam, ceftazidime, chloramphenicol, ciprofloxacin, imipenem, levofloxacin, meropenem, piperacillin/tazobactam and tetracycline. Biochemical reactions of treated group showed negative reaction in colistin, lysine, and ornithine while positive reactions to acetamide, arginine, and malonate as compared to control. Overall results showed an alteration of 38.9% in susceptibility pattern, 30% in MIC values of tested antimicrobials and 18.2% change in biochemical reaction after biofield treatment. A significant change in biotype number (02063736) was reported with green pigment as special characteristics after biofield treatment as compared to control (05041776) group with yellow pigment. In treated group, a new species was identified as Pseudomonas aeruginosa, as compared to control. Study findings suggest that biofield treatment has a significant effect on the phenotypic character and biotype number of multidrug resistant strain of B. cepacia.

Conclusion

Overall data concludes that biofield treatment has shown significant impact on antimicrobial susceptibility pattern, MIC values, biochemical reactions and biotype number of MDR strain of B. cepacia. In treated group, a new species was identified as Pseudomonas aeruginosa, as compared to control, B. cepacia. Based on the study outcomes, biofield treatment could be applied to alter the sensitivity pattern of antimicrobials, against multi drug resistance of B. cepacia.